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Using the same Bayes Net (shown below), we want to compute P(Y | +2z). All variables have binary domains.
Assume we run variable elimination to compute the answer to this query, with the following variable elimination

ordering: X, T, U, V, W.
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1 Variable Elimination

Using the same Bayes Net (shown below), we want to compute P(Y | +z). All variables have binary domains.
Assume we run variable elimination to compute the answer to this query, with the following variable elimination

ordering: X, T, U, V, W.

Complete the following description of the factors generated in this process:

After inserting evidence, we have the following factors to start out with:

P(T),PU|T),P(V|T),P(W|T),P(X|T),P(Y|V,W), P(+2z|X)
(a) When eliminating X we generate a new factor f; as follows, which leaves us with the factors:
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(a) When eliminating X we generate a new factor f; as follows, which leaves us with the factors:

f1(+2|T) = ZPﬂT (+2|z) P(T),P(U|T), P(V|T), P(W|T), P(Y|V,W), f1(+z|T)

(b) When eliminating 7" we generate a new factor fa as follows, which leaves us with the factors:
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(c) When eliminating U we generate a new factor f3 as follows, which leaves us with the factors:
o (VoW 12) = (VW) (s, POYIV, W)

(d) When eliminating V' we generate a new factor f; as follows, which leaves us with the factors:

Sy (w,y, +2) = 2 L R(YIOW) g (Y e

(e) When eliminating W we generate a new factor f5 as follows, which leaves us with the factors:
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(f) How would you obtain P(Y | +z) from the factors left above:
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(g) What is the size of the largest factor that gets generated during the above process?
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(m) Does there exist a better elimination ordering (one which generates smaller largest factors)?
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2 Sampling and Dynamic Bayes Nets

We would like to analyze people’s ice cream eating habits on sunny and rainy days Suppose we consider the
weather, along with a person’s ice-cream eating, over the span of two days. We’ll have four random variables:
Wy and W5 stand for the weather on days 1 and 2, which can either be rainy R or sunny S, and the variables I;
and I, represent whether or not the person ate ice cream on days 1 and 2, and take values T (for truly eating
ice cream) or F. We can model this as the following Bayes Net with these probabilities.

@ Wy | Wy | P(Wa|W7) W | I | PIW)
Wy | P(Wh) S S 0.7 S| T 0.9
S 0.6 S R 0.3 S | F 0.1
R 0.4 R S 0.5 R | T 0.2
Q Q R | R 0.5 R | F 0.8
Suppose we produce the following samples of (W7, I, Wy, I5) from ice-cream model:
R B ERT S(F{J s T S, T,R, F
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1. What is }3(W2 = R), the probability that sampling assigns to the event Wy = R?
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2. Cross off samples above which are rejected by rejection sampling if we're computing P(W5|I, = T, I, =F).

Vs, I5) from the ice-cream model:

S,T.R, F

Suppose we produce the following samples of (W,
R,F.R,F R,F, R, F
R,F,R,T ST T

I,V
S,F, S, T
S. T, T

|

N

Rejection sampling seems to be wasting a lot of effort, so we decide to switch to likelihood weighting.
Assume we generate the following six samples given the evidence I}, =T and I, = F:

(Wi, Iy, Wa, 1) = {(s,T, R,F), (R, T,R,F), (S,T,R,F), (S, T,S,F), (S, T, S, F), (R, T,S,F)}

3. What is the weight of the first sample (S, T, R, F) above?
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4. Use likelihood weighting to estimate P(Ws|I; =T, I, = F).
The sample weights are given by

(“.1,11,“":2,]2) w (”’],h,”’b,]z) w
S, T,R, F 0.72 S, T, S, F 0.09
R, T,R, F 0.16 S, T,S, F 0.09
S, T,R, F 0.72 R, T,S, F 0.02

O 3L+ 0.1 +0.7L
P(\Nz:K |I{:T, IL‘:FB: —

0.37+0.16+032 + ©.03F 9.0y +0.02

= 0.3%89

P(W‘L:S | I4=T, L, =F) = 1-0.88§ =0.441



