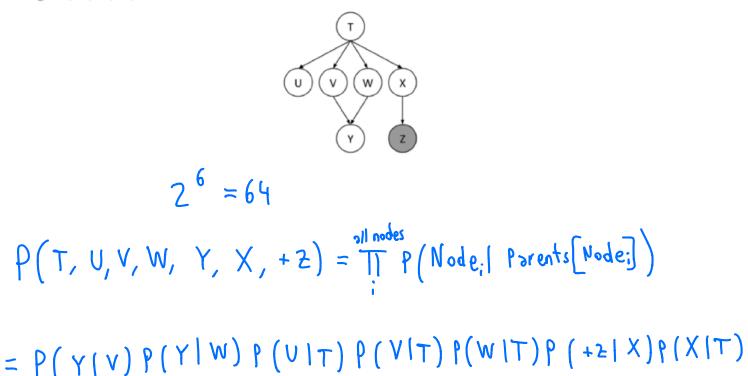
Variable elimination

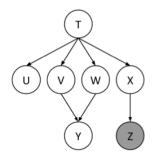
Using the same Bayes Net (shown below), we want to compute $P(Y \mid +z)$. All variables have binary domains. Assume we run variable elimination to compute the answer to this query, with the following variable elimination ordering: X, T, U, V, W.



To get
$$P(A|+b)$$
 we need to eliminate all other variables, $X_1, X_2, ... \neq A, B$

1 Variable Elimination

Using the same Bayes Net (shown below), we want to compute $P(Y \mid +z)$. All variables have binary domains. Assume we run variable elimination to compute the answer to this query, with the following variable elimination ordering: X, T, U, V, W.



Complete the following description of the factors generated in this process:

After inserting evidence, we have the following factors to start out with:

$$P(T), P(U|T), P(V|T), P(W|T), P(X|T), P(Y|V, W), P(+z|X)$$

(a) When eliminating X we generate a new factor f_1 as follows, which leaves us with the factors:

$$\rho(T,X,+z) = \rho(+z|X) \rho(X|T) \rho(T)$$

$$\rho(X,+z|T) = \rho(+z|X) \rho(X|T)$$

(a) When eliminating X we generate a new factor f_1 as follows, which leaves us with the factors:

$$f_1(+z|T) = \sum_x P(x|T)P(+z|x)$$
 $P(T), P(U|T), P(V|T), P(W|T), P(Y|V, W), f_1(+z|T)$

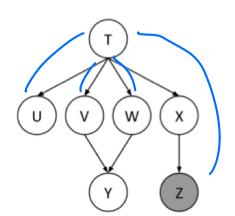
- (b) When eliminating T we generate a new factor f_2 as follows, which leaves us with the factors:
- 1 Join:

2) Sum out:

$$f_2(v, v, w, +\varepsilon) = \sum_t P(t) P(v|t) P(v|t) P(w|t) f_1(+\varepsilon|t)$$

factors remaining:

$$f_2(U, V, W, +2), P(Y|V, W)$$



by cond. indep properties of the graph

(c) When eliminating U we generate a new factor f_3 as follows, which leaves us with the factors:

$$f_3(V,W,+z) = \sum_{v} f_s(v,V,W,+z)$$

(d) When eliminating V we generate a new factor f_4 as follows, which leaves us with the factors:

$$f_4(M,Y,+z) = \sum_{i} f_3(v,W,+z) P(Y|v,W) \qquad f_4(M,Y,+z)$$

(e) When eliminating W we generate a new factor f_5 as follows, which leaves us with the factors:

$$f_5(Y,+z)=\sum_{w}f_u(w,Y,+z)$$

$$f_5(Y,+z)$$

(f) How would you obtain $P(Y \mid +z)$ from the factors left above:

$$P(Y|+z) = \frac{f_5(Y,+z)}{P(+z)} = \frac{\int_1^{\infty} \frac{f_5(Y,+z)}{\sum f(Y,+z)}}{\frac{\sum f(Y,+z)}{\sum f(Y,+z)}}$$

(g) What is the size of the largest factor that gets generated during the above process?

$$f_2$$
, 2^3 rows

(m) Does there exist a better elimination ordering (one which generates smaller largest factors)?

$$U, X, T, V, W \rightarrow 2^2$$

$$\frac{1}{V} = \frac{1}{V} = \frac{1}$$

Sampling

Prior

Rejection

Likelihood Weighting

Discord somples inconsistent with evidence

AFTER generating

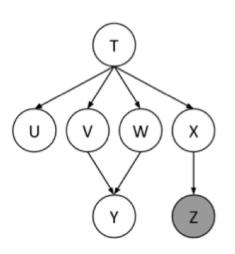
Discord Samples inconsistent with evidence while generating

Likelihood Weighting Trying to be less worteful.

→ Enforce evidence

L PROBLEMATIC

- To counteract, we use weights



W = "probability of evidence given sampled variables"

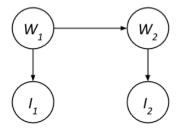
= T P(e| parents[e])
evidence var e

Gibbs Sampling

- Iterative random resampling

Sampling and Dynamic Bayes Nets

We would like to analyze people's ice cream eating habits on sunny and rainy days Suppose we consider the weather, along with a person's ice-cream eating, over the span of two days. We'll have four random variables: W_1 and W_2 stand for the weather on days 1 and 2, which can either be rainy R or sunny S, and the variables I_1 and I_2 represent whether or not the person ate ice cream on days 1 and 2, and take values T (for truly eating ice cream) or F. We can model this as the following Bayes Net with these probabilities.



$P(W_1)$
0.6
0.4

W_1	W_2	$P(W_2 W_1)$
S	S	0.7
S	R	0.3
R	S	0.5
R	R	0.5

W	I	P(I W)
S	T	0.9
S	F	0.1
R	T	0.2
R	F	0.8

Suppose we produce the following samples of
$$(W_1,I_1,W_2,I_2)$$
 from the ice-cream model: R. F. R. F. R. F. R. F. R. F. S. T. S. T. S. T. S. T. S. T. S. T. R. F. R. F. S. T. S. T.

1. What is $\widehat{P}(W_2 = \mathbb{R})$, the probability that sampling assigns to the event $W_2 = \mathbb{R}$?

$$\hat{\rho}(W_2 = R) = \frac{5}{10} = 0.5$$

2. Cross off samples above which are rejected by rejection sampling if we're computing $P(W_2|I_1=T,I_2=F)$.

Suppose we produce the following samples of (W_1, I_1, W_2, I_2) from the ice-cream model:

Rejection sampling seems to be wasting a lot of effort, so we decide to switch to likelihood weighting. Assume we generate the following six samples given the evidence $I_1 = T$ and $I_2 = F$:

$$(W_1,I_1,W_2,I_2) = \Big\{ (\mathtt{S},\mathtt{T},\mathtt{R},\mathtt{F}), (\mathtt{R},\mathtt{T},\mathtt{R},\mathtt{F}), (\mathtt{S},\mathtt{T},\mathtt{R},\mathtt{F}), (\mathtt{S},\mathtt{T},\mathtt{S},\mathtt{F}), (\mathtt{S},\mathtt{T},\mathtt{S},\mathtt{F}), (\mathtt{R},\mathtt{T},\mathtt{S},\mathtt{F}) \Big\}$$

3. What is the weight of the first sample (S, T, R, F) above?

$$W = \text{"probability of evidence given sampled Variables"}$$

$$= P(I_1 = T, I_2 = F \mid W_1 = S, W_2 = R)$$

$$= P(I_1 = T \mid W_2 = S, W_2 = R) P(I_2 = F \mid W_3 = S, W_2 = R)$$

$$= P(I_1 = T | W_1 = S) P(I_2 = F | W_2 = R) = (0.9) (0.8) = 0.72$$

4. Use likelihood weighting to estimate $P(W_2|I_1 = T, I_2 = F)$. The sample weights are given by

(W_1, I_1, W_2, I_2)	w	(W_1, I_1, W_2, I_2)	w
S, T, R, F	0.72	S, T, S, F	0.09
R, T, R, F	0.16	S, T, S, F	0.09
S, T, R, F	0.72	R, T, S, F	0.02

$$P(W_2 = R \mid I_z = F) = \frac{0.72 + 0.16 + 0.72}{0.72 + 0.05 + 0.05}$$

$$P(W_2 = S | I_1 = T, I_2 = F) = 1 - 0.889 = 0.111$$