less

	Exact	Approximate	intensive
Boyes Nets	Variable Elimination	Sawblind	
HMMs	forewad	Particle filtering	

Want to estimate probabilities of your state at time to based on evidence. Same as foreward algorithm!

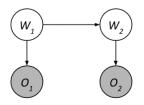
[the same as forward algorithm]

- 1) For each particle, look at transition probs. Time Elapse Update sample, and update particle position
- 2) Re-weigh particles (with evidence at time t) } Observation Update Down weigh particles inconsistent with evidence"
- 3) Resample particles (so we don't have to track)
 weighted samples

CS188 Summer 2018 Section 10: HMMs and Naive Bayes

Particle Filtering

Let's use Particle Filtering to estimate the distribution of $P(W_2|O_1=A,O_2=B)$. Here's the HMM again:



W_1	$P(W_1)$
0	0.3
1	0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	A	0.9
0	В	0.1
1	Α	0.5
1	В	0.5

0.22 20.05

We start with two particles representing our distribution for W_1 .

 $P_1:W_1=0$ $P_2: W_1 = 1$

Use the following random numbers to run particle filtering:

[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]

1. **Observe**: Compute the weight of the two particles after evidence $O_1 = A$.

$$w(\rho_1) = \rho(O_1 = A \mid W_1 = 0) = 0.9$$

$$w(P_1) = P(O_1 = A \mid W_1 = 1) = O.s$$

2. **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.

the weights above to sample new particle positions fneW Vie

$$W_1 = 0 \sim \frac{0.9}{0.5 + 0.9} = 0.64 \Rightarrow [0, 0.64]$$

$$W_2 = 1 \sim \frac{0.7}{0.5 + 0.9} = 0.36 \Rightarrow [0.64, 1]$$

Resompling

$$P_{4} = 0$$
 (since 0.22 < 0.64)

$$P_1 = 0$$
 (since 0.22 < 0.64)
 $P_2 = 0$ (since 0.05 < 0.64)

3. **Elapse Time**: Now let's compute the elapse time particle update. Sample P_1 and P_2 from applying the time update.

$$P_1 = 0$$
 (since 0.33 < 0.4)
 $P_2 = 0$ (since 0.20 < 0.4)

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1		
1		0.2

0.33 0.20

4. **Observe**: Compute the weight of the two particles after evidence $O_2 = B$.

$$W(P_1) = P(O_2 = B | W_1 = O) = 0.1$$

$$w(P_2) = P(O_2 = B | W_1 = 0) = 0.1$$

W_t	O_t	$P(O_t W_t)$
0	A	0.9
0	В	0.1
1	A	0.5
1	В	0.5

5. **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.

Intervals?

0.84, 0.54,

6. What is our estimated distribution for $P(W_2|O_1=A,O_2=B)$?

$$P(W_2 = 0 \mid O_4 = A, O_2 = B) = \frac{2}{2} = 1$$

$$P(W_2 = 2 \mid O_1 = A, O_2 = B) = \frac{0}{2} = 0$$

2 Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and B. Y, A, and B are all binary variables, with domains 0 and 1. We are given 10 training points from which we will estimate our distribution.

											(
$oxedsymbol{A}$	1	1	1	1	0	1	0	1	1	1	>	<
B	1	0	0	1	1	1	1	0	1	1		_
Y	1	1	0	0	0	1	1	0	0	0		\sim
											(,)	(b)
											(A)	(B)
												\smile

1. What are the maximum likelihood estimates for the tables P(Y), P(A|Y), and P(B|Y)?

$$\mathcal{Z}(x_1,...,x_n) = \prod_i P(x_i)$$

$$= \prod_i P(A=a_i, B=b_i, Y=y_i)$$

$$= \prod_i P(A=a_i, B=b_i, Y=y_i) P(Y=y_i) P(Y=y_i)$$

$$\theta = P(F = f \mid \xi = \xi)$$
 (in this case $\theta_1 = P(Y = 0)$, $\theta_2 = P(A = 1 \mid Y = 0)$, ...)

$$\Theta = 3id_{M3}x \quad \mathcal{I}(x^1, ..., x^N) = \frac{N^{5}}{4} \sum_{N^{5}}^{i} f_{!} \qquad \qquad b^{\text{WFF}}(x) = \frac{N}{\text{cont}(x)}$$

A	1	1	1	1	0	1	0	1	1	1
B	1	0	0	1	1	1	1	0	1	1
Y	1	1	0	0	0	1	1	0	0	0

		A	$\mid Y \mid$	P(A Y)
Y	P(Y)	0	0	1/6
0	6/10	1	0	5/6
1	4/40	0	1	1/4
		1	1	3/4

P(B Y)	Y	$\mid B \mid$
2/6	0	0
4/6	0	1
1/4	1	0
3/4	1	1

2. Consider a new data point (A = 1, B = 1). What label would this classifier assign to this sample?

What label CAN we assign?

What tools do me have to decide?

$$P(Y=0, A=1, B=1) = \frac{6}{10} \cdot \frac{5}{6} \cdot \frac{4}{6} = \frac{1}{3}$$

$$P(Y=1, A=1, B=1) = \frac{4}{10} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{40}$$

3. Let's use Laplace Smoothing to smooth out our distribution. Compute the new distribution for P(A|Y) given Laplace Smoothing with k=2.

prevent overfitting!

$$P_{LAP_{J}K}(x) = \frac{count(x) + K}{N + K(X)}$$

$$\lim_{K\to\infty} P_{LAP, K}(x) = \frac{4}{|x|}$$