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Abstract. This literature survey proposes a categorization for Al alignment approaches
within the expected utility maximization framework. We additionally compare such meth-
ods with respect to their training signal, assumptions about the human, algorithm output,
and scalability. Finally, we summarize how all such approaches can be cast as instantia-
tions of the CIRL (Cooperative Inverse Reinforcement Learning) framework.

1 Introduction

Surveying the current Al Safety literature, there doesn’t seem to be a unique accepted definition
of “Al alignment” [I]. One of the most simple definitions that has gained a decent amount of
traction is that of Paul Christiano [2]:

A is aligned with H if A is trying to do what H wants it to do.

Taken literally, this definition is pretty general. In fact, one could interpret the entire field of
AT as trying to get agents do what humans want them to do. All Al algorithms can be thought
of as being designed for alignment in this sense. In its original context however, the expression
“AT alignment” was referred mainly to the alignment of highly capable Als. In that sense, we
can draw a (somewhat arbitrary) distinction between AI approaches that can preserve value
alignment when approaching tasks with broad-ranging implications, and those that are mainly
applicable when solving narrow tasks (e.g. sorting objects in an assembly line).

Currently there is no algorithm or approach that is capable of addressing the Al alignment
problem in full generality, neither in theory or in practice. “Solving” Value Alignment for any
arbitrary task appears to be an impossibly hard problem — as it would require fully character-
izing the values of humans, and in the multi-agent setting, aggregating and trading off between
different humans, all the while taking into account value changes over time. However, various
directions are currently being explored by the research community to achieve approximate solu-
tions (approximate as far as you believe that people’s values cannot be exactly quantified). The
purpose of this report is to present an overview of such directions and the preliminary results
and properties that various methods in the field have, with a focus on highlighting how such
methods can fall short of realistic alignment in real world settings. One should not take the
methods considered as a comprehensive view of the field.

Most current approaches to the alignment problem are based on Al systems that are ex-
pected utility maximizers and that receive training signal from human data. These assumptions
are already restrictive, and some have argued that they pose an unsurmountable challenge to
achieving full alignment [I8]. In addition to these assumptions, phenomena such as bounded
rationality - the idea that rationality of individuals is limited by their information state, the
cognitive limitations of their minds, and time constraints — are not properly accounted for in the
current frameworks. Even though there have been calls to reframe the problem in other lenses
[3], in this report we will limit ourselves to work done within these assumptions.

When assessing the various methods, this report will mainly focus on what is referred to as the
specification problem [I8/17], that can be defined as the problem of “defining the behavior that
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we would want to see from our Al system”. Moreover, we will briefly mention the approaches’
scalable supervision, as defined here [19]. However, we will not discuss AI Safety issues that can
occur during the learning process, that are more tangential to the alignment problem and that
affect all methods considered at a similar level.

2 Categorizing Alignment Approaches

When assessing current approaches to alignment, various factors emerge as playing a differ-
entiating role between methods. Some of these factors, and how they can affect Al alignment
are:

e Training signal: In order to train an agent to do anything, we need to have some kind of
training signal from which the agent can infer what kind of behaviour is appropriate. In the
context of classic reinforcement learning, such a training signal is given by the reward, that
implicitly defines which behaviours are “good”.

However, for complex contexts, it is hard for humans to explicitly write out a reward function
that encompasses everything they care about. As a classic example, maximizing the amount
of dirt collected might seem like a reasonable objective to give to a cleaning robot. The
problems with such objective only appear obvious in hindsight once the robot learns to
continuously dump and re-collect the dirt it found. The difficulty of specifying a proxy
reward is equivalent to the problem widely known as Goodhart’s Law [20021].

There are however other ways for humans to provide training signal that try to avoid making
the human explicitly specify a reward, such as providing near-optimal demonstrations, pro-
viding preferences between states or trajectories, or decomposing problems into subproblems
and assembling solutions to subproblems to form the solution of a harder problem (examples
of these are considered in section |3[ and . In this sense, we can think of the training signal
broadly as being the type of interaction between the human and the agent, together with
the assumptions about what the meaning of the interaction is towards the larger goal.

Humans cannot provide training signal of any type for any task. In fact, the type of training
signal is an assumption about the approach that greatly determines feasibility of obtaining
such signal and tractability when scaling up the algorithm to more complex domains. For
example, humans can’t necessarily perform “near-optimal demonstrations” for controlling a
robot with many degrees of freedom (for example, 10 arms), or for running an economy (we
have trouble with that ourselves). However, humans might still be able to state preferences
between trajectories for the movement of such robot, or between trajectories of economies.
Another factor to consider is the cost of the training signal: if it requires online interaction,
the signal can become very time intensive for humans and greatly slow down the training
process, potentially impacting the feasibility of the approach at larger scales. In this sense,
the type of training signal directly influences the assumptions about the human and the
scalability of the approach.

e Assumptions about the human: In addition to assuming that the human is capable
of providing the training signal, any method is implicitly makes some assumptions about
how the human chooses their actions, about their information state, how they manage
computation-time tradeoffs, their biases, their action space, and so on. Most methods in
fact model the human at some stage as being near-optimal (e.g. Boltzmann rational) in
their demonstrations, or try to explicitly model human suboptimalities. However, that of
modelling human suboptimalities - either by manually specifying them or learning them -
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seems to be a very difficult problem, as there is no way to check whether the model is correct
[4].

A nice solution to this problem would be to learn both the planner (i.e. the human model)
and the reward function that humans optimize concurrently. However, not only it is impos-
sible to learn both planner and reward function from demonstrations without any further
assumptions, but it is always possible to find degenerate pairs of planner and reward that
perfectly explain the data [32].

Generally, it seems like making some assumptions about human behaviour is going to be
necessary to tackle alignment, and due to the issues above all methods are going to incur in
some model-misspecification, at least to the degree that the assumptions about the human
are too strong. However, an important thing to note is that for different methods such
assumptions are more or less fundamental for the correct behaviour of the algorithm, thus
having different consequences in terms of alignment.

Algorithm Output: One major difference between approaches is the type of output.

One basic approach to alignment is to train the AI to act how we want it to without
constraining it to explicitly represent “what we value” at any point of the process. We can
think of this as a policy-learning approach that preserves alignment. The standard proposal
in this direction is to use some form of Imitation Learning - incentivizing the agent to
mimic behaviour that we consider aligned. In this survey, we will refer to such methods as
Imitation Learning based approaches. IDA and Debate [I3JT14] - seen later in more detail,
can be considered examples of this.

Another approach is based on trying to obtain an explicit representation of the reward func-
tion, and subsequently training an agent with standard Reinforcement Learning techniques
using such a reward function. Given the difficulties and risks involved with specifying a re-
ward function by hand when dealing with a highly-capable AT, [2223] the standard approach
in this case is to try and learn such a reward, in a process commonly called Reward or Value
Learning [18].

Both these approaches - Imitation-Based and Value Learning methods - can be thought of
as different angles from which to tackle the specification problem [T9T7].

One reason behind choosing to learn a reward function rather than a policy directly is
that it is generally assumed that reward functions are able to more succinctly encapsulate
everything that is necessary to know about the goal to be able to generalize to new envi-
ronments. Moreover, one clear advantage of Value Learning over Imitation Learning is that
once a reward function is recovered — assuming it is (approximately) correct — it is rela-
tively straightforward to achieve better-than-human performance by just applying standard
RL techniques. On the other hand, using Imitation Learning techniques to exceed human
performance requires some additional assumptions and ingenuity (e.g. as seen for IDA &
Debate later). Other advantages of Value Learning are possibly better generalization and in-
terpretability. If one recovers the “true” reward (or at least something in the spirit of it), one
would expect it to better generalize to new situations unseen at training time. Also, having
an explicit representation of the reward enables for greater interpretability compared to a
black-box policy. However, one disadvantage of Reward Learning is that even small mistakes
in the learned reward can be amplified in unpredictable ways by the optimization process,
leading to catastrophic failures. This is commonly known as the problem of negative side
effects [19].
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e Scalability and Complexity: In addition to being affected by the type of training signal
- and thus by the extent of user interaction necessary - scalability strongly depends on the
mathematical framing of the problem and its computational complexity.

We first will consider separately approaches that are based off of value learning and imita-
tion learning respectively, and then place all the methods considered in the CIRL framework
(Cooperative Inverse Reinforcement Learning, [§]).

3 Value Learning approaches

3.1 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL, [24/T1]) is based on trying to infer the human’s reward
function by observing the human’s behaviour, assuming that the human is near-optimal at
maximizing their reward.

Assumptions about H. The standard formulations of IRL ([24/TT] and others) assume
that the human is near-optimal (Boltzmann rational) in giving the demonstrations used as
training data. Some attempts have been made to relax some assumption to allow for models of
human suboptimality [25]. However, scaling the quality of such models arbitrarily seems like a
difficult problem due the reasons mentioned in Section[2] Even with these assumptions about the
human, in most scenarios the reward function is not uniquely recoverable. Nevertheless, various
ways have been proposed to narrow down to a specific reward function, and seem to perform
reasonably well in practice in simple environments [11137].

Training signal. IRL requires the human to give expert demonstrations for the task at
hand. As mentioned in Section [2} this is implicitly assuming that the human can give such
demonstrations. This might not be possible for instance in tasks with a different action space,
or for which humans cannot meet the assumptions made by the human model. It is unclear
what the consequences of this are for achieving alignment: one thing to note is that even though
humans cannot perform near-optimal demonstrations for some tasks, assuming that human
demonstrations in other tasks are sufficient to infer human reward, other non-demonstrable
complex behaviours could emerge spontaneously as instrumental goals.

3.2 Inverse Reward Design

Inverse Reward Design (IRD, [6]) tries to tackle the problem of negative side effects [19] that
arise when the reward function is misspecified. In particular, IRD circumvents the requirement
of manually specifying all-encompassing reward functions, requiring the human to only specify
a prozy reward function that is near-optimal in a specific training context. On a high-level, IRD
is set up so that the agent is aware that the reward function specified by the human is just a
proxy designed with certain test environments in mind, and thus might be misspecified for new
environments. By making the AT agent interpret the proxy reward it is given in a pragmatic (i.e.
non-literal) way, such agent maintains some uncertainty over what the true reward function is,
and chooses its actions according to risk-averse planning on its posterior over the true reward.

Assumptions about H. IRD assumes that the human is Boltzmann rational at specifying
reward functions for a specific set of training environments. Implicitly, this assumes that the
human is capable of specifying a reward function for any of these environments in the first place.
It seems like this might not be possible for sufficiently complex environments, for which even
coming up with a near-optimal rewards in a specific test environment might be hard, without
access to a simulator (e.g. running an economy).
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Training signal. In IRD the only interaction with the human is in the form of the proxy
reward function it receives at the beginning of training. Extensions on IRD added the option to
receive active feedback from the user [7], enabling further disambiguation of the true reward by
the human.

Scalability. Computationally, this approach seems challenging, and as such is currently
restricted to simple gridworlds. Theoretically, this approach seems only as scalable as the ability
for humans to specify any meaningful reward function is.

3.3 Learning from human preferences

Another approach that has been proposed is to learn the desired reward function by preference
elicitation.

Training signal. In Deep Reinforcement Learning From Human Preferences [5], humans
are shown snippets of trajectories and asked to provide feedback by expressing a preference of
one over the other. The snippets shown are chosen to maximize the information gained by the
elicitation. Standard RL techniques are applied to this estimate of the reward function to train
agents at task to achieve better-than-human performance.

Assumptions about H. This approach assumes that the human is near-optimal (Boltz-
mann rational) at providing preferences over trajectories. This implicitly requires the trajectories
to be informative enough about the true reward (long enough to encompass long-term goals and
interpretable enough by humans), and humans to be sufficiently rational in evaluating them.
Because of this it is unclear how much this technique can be scaled to achieve alignment for
complex tasks in which there are many subtle nuances between trajectories and rewards are on
long horizons.

Scalability. The main bottleneck for this method in terms of time complexity is definitely
due to the amount of human interaction required. Some attempts have been made to speed up
this process [34] but it’s unclear how scalable these methods are to complex domains. Moreover,
it is unclear if can recover reward functions uniquely, and how the theoretical guarantees compare
to those of IRL in learning reward functions.

4 Imitation Learning Based Methods

4.1 Imitation Learning

Some authors argue that approaches [36] that cannot surpass human performance are not viable
solutions to the alignment problem, as economic incentives would cause people to turn to unsafe
better-than-human performance methods. For this reason, vanilla imitation learning by itself is
usually not considered a realistic “solution” to the alignment problem when considered in full
generality. However, as it is used by other approaches and is broadly relevant to alignment we
will cover it here.

Imitation learning treats the human actions as an example of aligned actions, and directly
learns a policy that mimics the policy of the human. There are various imitation learning algo-
rithms [2829], but we will only consider the method on a high level.

Assumptions about H. As mentioned above, imitation learning assumes that human ac-
tions are examples of aligned actions. This assumption could fall short of reality due to human
suboptimality, inconsistency, and asymmetry between humans and agents. As an example of the
latter, we don’t necessarily want to make our trained agent crave coffee in the morning just like
the human it was trained from. Another assumption that is made by imitation learning methods
is that humans are capable of giving demonstrations whatsoever for the task at hand. As we
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have seen before however, this can be difficult. Especially in terms of alignment, gathering large
amounts of “aligned” human behaviour to mimic seems to not be a trivial problem.

Performance. As mentioned before, imitation learning approaches are limited by design in
not being able to surpass human performance. This is both a blessing and a curse, as it avoids
many of the safety issues introduced by the maximization of a reward function, but also does
not deliver on the promise of a better-than-human Al

Scalability. One issue with imitation learning methods is that the learnt policies usually
have poor generalization capabilities. Some methods [28] try to address this, but do not solve
the distributional shift problems entirely.

4.2 IDA

Iterated Distillation and Amplification (IDA, [13]) constitutes a somewhat different approach
to the alignment problem compared to the previous methods considered. The idea is based on
the assumption that humans’ considered judgement is as close as we can get to ground truth
aligned behaviour, and that the interactions of the human with IDA are representative of such
considered judgement [3I]. This can be seen as an attempt to address the ideal specification
problem (according to the categorization advanced by Deepmind [I7]), of which IDA can be
considered a corresponding design specification.

Together with Debate (seen later), IDA can be considered an attempt to overcome the
major limitation of not being able to exceed human performance while still maintaining an
imitation learning-based approach, thus avoiding some of the risks involved with the unrestricted
optimization of a reward function.

Training signal. The idea underlying IDA is to first train an oracle X through imitation
learning to be able to solve simple tasks by observing a human. Then have the human solve
more difficult tasks by decomposing them into simpler subtasks (that it feeds to X to solve)
and assembling the subtasks’ solutions provided by X. By training X to imitate this process of
decomposition and reassembly, and repeating the entire process arbitrarily many times, the idea
is that one could achieve super-human performance while preserving alignment at each step of
X’s training. For more details about the algorithm, see the original paper [13]. In this sense,
the act of decomposition of a problem into subtasks and assembly of subtask solutions is the
training signal used to train X.

Assumptions about H. IDA assumes that the human is capable of being near-optimal in
performing a complex task (in a way that we would consider aligned) if presented with solutions
for all possible subtasks H could require. In other words, it is assuming that H is capable of
“decomposing” a task and “assembling” solutions to its sub-tasks in an aligned way, and that
such a process enables human actions to be reflective of their considered judgement. This is
possibly a strong assumption, that needs more empirical investigation. However, it seems to
assume human optimality in a more restricted way than many other approaches, and in that
sense this direction looks promising.

Scalability. The main assumption that underlies the scalability of the method is that the
process of training X to imitate the human preserves alignment, and that the human is capable
of preserving alignment when scaling up to arbitrarily complex tasks, when given access to an
oracle X that is capable of solving problems that are slightly easier than the task at hand in an
aligned way. It is unclear how reliably one could get X to preserve alignment at each iteration of
IDA. One necessary factor for IDA to scale is for imitation learning to be able to imitate human
alignment in tasks robustly. This seems however like it could require an unfeasible amount of
training data, especially once the level of tasks reaches a certain complexity.



Overview of current Al Alignment Approaches 7
4.3 Debate

The idea behind the debate alignment approach [14] is to have agents debate topics with one
another when they disagree. If there is a disagreement, both agents will try to identify flaws
in the other’s argument, aiming to win the debate. A human judge will look at the agents
arguments, and will pick a winning side. The main underlying assumption is that it is harder
to lie than to refute a lie, so that there is no incentive to lie and the agents are driven to try
and be as accurate as possible. As both agents in the debate share the same weights (it can be
thought of as self-play), and thus have equal capability, and one would expect the agent arguing
for the correct position to be able to win the debate.

Assumptions about H. One of the main assumptions is that the human will be capable of
identifying which agent is telling the truth by evaluating their arguments. This seems difficult
in settings in which the matter being debated is beyond human comprehension, although the
paper addresses why one could expect this to be possible. If this assumption were to hold, this
approach could lead to better-than-human performance.

Training signal. The human provides training signal to the debate agents by providing it’s
judgements. The agents are optimized to win the debate. As mentioned in the paper, Debate is
related to IDA in that both involve a recursive decomposition of the task in which humans help
answer relevant questions. The main difference is that in IDA each question is answered by a
different copy of X, while in the Debate each question is answered by one of the two debaters.
However, by making the agents commit to just one line of debate, Debate could be preferable
in terms of complexity.

Scalability. There are various reasons to be concerned about the scalability of such an
approach: in short, it is unclear if debates structured as in this approach would robustly converge
to the right answer. This could be due to human biases, to the agent learning to exploiting
the human. Moreover, the scalability of the approach relies on having imitation-learning based
human models to generate training data in order to reduce the burden on actual humans.
However, like in the case of IDA, such models are currently not yet realistic.

5 A unifying perspective: CIRL

As we have seen in the previous sections, alignment approaches generally require taking into
account both the human - who determines what the objective is - and the agent, that infers
such an objective under some assumptions, and then attempts to maximize it. In this sense,
alignment is fundamentally a multi-agent problem. CIRL [8] is an attempt to formally define
the alignment problem, formulating it as a two-player game in which a human (H) and a Al
agent (R) share a common reward function, but only the human has knowledge of such a reward
function. Solving a CIRL game however requires more than multi-agent decision theory, as one
has to address the fact that humans don’t easily fall in any idealized framework of rational
behaviour [10].

Even though there have been attempts to solve the CIRL problem directly, some of the most
immediate benefits provided by the CIRL framework are that it enables to collocate approaches
to alignment within a unified picture. In particular, we can think of Value Learning methods to
alignment as first trying to recover the human reward, and then maximize it, in what can be
considered a 2-phase game. Imitation-Learning methods instead set their objective to maximize
similarity between the agent and human actions.

All of the methods considered can be thought of in this CIRL framework, with more or less
structured assumptions about the game and it’s players:
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e TRL makes the assumption that the cooperative game between H and R has two phases:
one in which H displays near-optimal behavior (or with modeled suboptimalities [25]) and
R learns from it, and a second phase in which R acts in accordance to such reward function.
IRL has actually been proven to be the best response to a fixed demonstration-by-expert
policy by H in the CIRL framework [8]. In this sense, R is not taking advantage of the fact
that H wants to help R to learn the reward, and more radically, H is just acting as usual in
the demonstration phase, without explicitly trying to help R learn the reward. Active IRL
[277] tries to remedy the first problem.

e IRD can be thought of as a CIRL game in which H specifies a proxy reward function
in a first phase of the game, communicating it to R together with a context M of the test
environments for which the proxy was designed. This data is interpreted by R pragmatically,
which then acts in the second phase of the game by risk-aversely maximizing what the reward
based on it’s belief about the true reward function is. Active IRD tries to take advantage
of the fact that H is still willing to help R narrow down on the true reward function even
after the first phase of the game is over [7].

e Deep RL from Human Preferences takes advantage of the sequential structure of the
game: at each turn R asks H their preference between a pair of trajectories chosen to be
maximally informative, and takes H’s response into account to update its belief about the
true reward function.

e Imitation Learning can also be cast as a solution to the CIRL problem. In a first phase
H demonstrates the behaviour that it would want R to perform, and in a second phase R
acts in the world trying to copy that behaviour, assuming that it will lead to high reward
for H.

e IDA can be thought of as a game in which there are arbitrarily many instruction phases
and then a deployment phase (or also interleaved learning and deployment phases). In each
learning phase, H instructs R to imitate H on the current task level decomposition and
composition (this consists of basically solving a nested imitation learning CIRL problem). At
deployment phase, R answers questions that H poses to it (in the basic question-formulation
of IDA).

e Debate can be thought of a CIRL game in which H interacts with R by expressing it’s
judgements, and thus giving R training signal to update it’s belief about human values,
thus becoming a better debater, and contributing to the H R pair in achieving high reward.
The game is structured in phases composed of a round in which H asks a question, rounds
in which R expresses it’s arguments and counter-arguments, and a final round in which H
expresses their judgement.

5.1 Solving CIRL

Some attempts have been made to try and solve the CIRL game directly - finding pairs of policies
for H and R that maximize the expected reward obtained by the H and R pair. However, it
currently seems necessary to introduce additional assumptions in order to make computation
more tractable. In Pragmatic-Pedagogic Value Alignment [9], the authors assume that the human
will behave pedagogically in a Boltzmann-rational way. This assumption was partially relaxed
in a later paper [I0], in which the human model was made to be a arbitrary function of human
Q-values. Here we will consider the latter method. In both cases, CIRL captures that H has
an incentive for R to infer the correct reward, inasmuch it helps to the maximization of the
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reward for the H-R pair. This has nice properties as it creates an incentive to mitigate and
avoid unintended consequences from misspecified rewards.

Training signal. the interaction of H with R, under the assumption of the method, is what
constitutes the training signal for the agent. In the case of CIRL, the type of this interaction is
not specified out of the box, and it will emerge naturally as part of the solution. In particular,
under the assumptions in the paper [10], pedagogic behaviours tend to emerge spontaneously,
to the extent that it’s useful for the H-R pair to achieve high reward.

Assumptions about H. CIRL makes strong assumptions about the human, namely that
it has full information, and acts in accordance to a policy parametrized by Q-values of the state.
One implicit assumption here is that H is estimating R’s belief state, and is using this to plan
what actions to perform - taking into account the effect on R’s belief about the true reward.
These assumptions are particularly strong as it doesn’t take into account human’s bounded
rationality, that seems to be a strong limiting factor in this setting.

Scalability. Even though CIRL seems to solve the problem in most generality out of all
methods presented above, it’s unclear how scalable of an approach solving the CIRL game itself
in full generality is. Even with simplifying assumptions the CIRL problem has bad complexity
properties, as it can be formulated as a POMDP that is exponential in the size of the action
space. [10] Moreover, it’s assumptions about the human are particularly strong.

6 Conclusion

Current progress. As mentioned in the introduction, none of the methods surveyed here can
clearly solve the alignment problem at scale. However, this does not take away from their merit,
or from the usefulness of further investigating their properties and pushing their capabilities. In
fact, it seems at the very least plausible that such methods could be useful as subroutines in
more advanced alignment approaches - in a similar way to how IDA and Debate use Imitation
Learning and could also use IRL [36].

Not considering computational efficiency concerns, it seems like most of problems of the
surveyed alignment approaches stem from their assumptions about humans. As mentioned pre-
viously, it seems impossible to totally forgo all such assumptions, but it is possible to try and
be as robust as possible to such assumptions not holding.

For example, IDA and Debate make assumptions about human optimality that seem less
fundamental than CIRL: CIRL assumes that the entire interaction between H and R - no matter
what form it ends up taking - will be shaped according to the way the human acts (encoded in the
human model), while IDA and Debate start from the assumption that careful human deliberation
is as close as we can get to aligned behaviour and try to isolate such behaviour by a specific
choice of setting (debates and task decomposition/composition). However, the practicality of
Imitation Learning Based methods depends on having imitation learning capabilities that are
far more advanced than the ones we have today.

Further research in existing methods. In general, it seems like further research is neces-
sary in establishing where the assumptions underlying these approaches to alignment are reason-
able, where they are not, and working towards trying to relax the strength of such assumptions
while still maintaining computational tractability.

For value learning in particular, interesting directions seem to be that of satisficing and mild
optimization, such as using quantilizers, which select an action randomly from a top quantile
by expected utility [35]. This could help being more robust to model misspecification, to which
value learning methods seem to be more susceptible to compared to Imitation Learning Based
methods, due to the unbounded optimization of a learned (and probably somewhat misspecified)
reward function. Active learning approaches also seem to be promising, allowing to extend
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previous methods to make R be capable to take advantage of the fact that H is willing to
disambiguate further between what is desired and undesired behavior. For Imitation Learning
Based methods instead, it seems important to further test the feasibility and strength of the
assumptions made by IDA and Debate, that are still relatively unclear due to the recency of
these approaches.

Foundational research. It also seems important to investigate whether some of the fun-
damental assumptions underlying all these models - such as utility maximization and classical
decision theory - are already restricting our capability of solving the alignment problem. In
particular, decision theory doesn’t have ways to account for bounded rationality, that seems to
be very relevant in attempting to model humans, and thus for solving the alignment problem.

As the field is relatively new, there are most likely still low-hanging fruits to be found in
solving the alignment problem. These could possibly consist new methods that fall outside of
these categories entirely, in a similar way to how IDA and Debate differ pretty strongly from
previous alignment approaches. Because of this, there seems to be good reason to hope for
additional steps towards in solving the AI alignment problem in the coming years.
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